
23/05/2025, 16:24OpenAI: Scaling PostgreSQL to the Next Level | PixelsTech

Page 1 of 14https://www.pixelstech.net/article/1747708863-openai%3a-scaling-postgresql-to-the-next-level

A

OpenAI: Scaling PostgreSQL to the Next LevelOpenAI: Scaling PostgreSQL to the Next LevelOpenAI: Scaling PostgreSQL to the Next LevelOpenAI: Scaling PostgreSQL to the Next Level
 tr_cn (/profile.php?user=tr_cn) ! 2025-05-19 22:29:18 " 22,578 # 1

t the PGConf.dev 2025 (https://2025.pgconf.dev/) Global Developer Conference, Bohan
Zhang (https://bohanzhang.me/#talks) from OpenAI shared OpenAI’s best practices with

PostgreSQL, offering a glimpse into the database usage of one of the most prominent
unicorn companies.

At OpenAI, we utilize an unsharded architecture with one writer and multiple readers,
demonstrating that PostgreSQL can scale gracefully under massive read loads.
— PGConf.dev 2025, Bohan Zhang from OpenAI

Bohan Zhang is a member of OpenAI’s Infrastructure team. He studied under Professor Andy
Pavlo (https://www.cs.cmu.edu/~pavlo/) at Carnegie Mellon University and co-founded
OtterTune (https://ottertune.com/) with him.

Background
PostgreSQL serves as the core database supporting the majority of OpenAI’s critical
systems. If PostgreSQL experiences downtime, many of OpenAI’s key services would be
directly affected. There have been several instances in the past where issues related to
PostgreSQL have led to outages of ChatGPT.

5OpenAl

ScalingPostgrestothenextlevelatOpenAl

BohanZhangMamborofTechricalSual,OpanAcohan@openal.comknowedguments:SichongLiu,ChaominYu,ChenglongHao,DmistPatroy,KelWang,CiXu,BanRa
inkatVenkataramaniandmanymoreatOpenAlinfratear

$ (/admin.php?
page_id=admin/file_generator)

 RANDOM FUN

(/fun/568-lose-some-weight)

Lose some weight (/fun/568-lose-
some-weight)

 SUPPORT US

If you find this article helpful,
please consider supporting our

work.

 DONATE (/donate.php)

https://www.pixelstech.net/profile.php?user=tr_cn
https://2025.pgconf.dev/
https://bohanzhang.me/#talks
https://www.cs.cmu.edu/~pavlo/
https://ottertune.com/
https://www.pixelstech.net/donate.php
https://www.pixelstech.net/admin.php?page_id=admin/file_generator
https://www.pixelstech.net/fun/568-lose-some-weight
https://www.pixelstech.net/fun/568-lose-some-weight

23/05/2025, 16:24OpenAI: Scaling PostgreSQL to the Next Level | PixelsTech

Page 2 of 14https://www.pixelstech.net/article/1747708863-openai%3a-scaling-postgresql-to-the-next-level

OpenAI utilizes managed databases on Azure, employing a classic PostgreSQL primary-
replica replication architecture without sharding. This setup consists of one primary database
and over forty replicas. For a service like OpenAI, which boasts 500 million active users,
scalability is a significant concern.

Challenges
In OpenAI’s primary-replica PostgreSQL architecture, read scalability is excellent. However,
“write requests” have become a major bottleneck. OpenAI has implemented numerous
optimizations in this area, such as offloading write loads wherever possible and avoiding the
addition of new services to the primary database.

23/05/2025, 16:24OpenAI: Scaling PostgreSQL to the Next Level | PixelsTech

Page 3 of 14https://www.pixelstech.net/article/1747708863-openai%3a-scaling-postgresql-to-the-next-level

PostgreSQL’s Multi-Version Concurrency Control (MVCC) design presents some known
issues, including table and index bloat. Tuning automatic garbage collection (vacuuming) can
be complex, as each write operation generates a complete new version, and index access
may require additional visibility checks. These design aspects pose challenges when scaling
read replicas: for example, increased Write-Ahead Logging (WAL) can lead to greater
replication lag, and as the number of replicas grows significantly, network bandwidth may
become a new bottleneck.

Measures
To address these issues, we have undertaken efforts on multiple fronts:

Controlling Primary Database Load

The first optimization involves smoothing out write spikes on the primary database to
minimize its load. For example:

Offloading all possible write operations.
Avoiding unnecessary writes at the application level.
Using lazy writes to smooth out write bursts.
Controlling the frequency during data backfilling.

Additionally, OpenAI strives to offload as many read requests as possible to replicas. For
read requests that cannot be removed from the primary database due to being part of read-
write transactions, high efficiency is required.

23/05/2025, 16:24OpenAI: Scaling PostgreSQL to the Next Level | PixelsTech

Page 4 of 14https://www.pixelstech.net/article/1747708863-openai%3a-scaling-postgresql-to-the-next-level

Query Optimization

The second optimization focuses on the query layer. Since long transactions can hinder
garbage collection and consume resources, timeouts are configured to avoid long “Idle in
Transaction” sessions, with timeouts set at the session, statement, and client levels.
Furthermore, complex multi-join queries (e.g., joining 12 tables at once) have been
optimized. The presentation also specifically mentioned that using ORM can easily lead to
inefficient queries and should be used cautiously.

23/05/2025, 16:24OpenAI: Scaling PostgreSQL to the Next Level | PixelsTech

Page 5 of 14https://www.pixelstech.net/article/1747708863-openai%3a-scaling-postgresql-to-the-next-level

Addressing Single Points of Failure

The primary database is a single point of failure; if it goes down, write operations cannot
proceed. In contrast, we have many read-only replicas; if one fails, applications can still read
from others. In fact, many critical requests are read-only, so even if the primary database
fails, they can continue to read from it.

Moreover, we differentiate between low-priority and high-priority requests. For high-priority
requests, OpenAI allocates dedicated read-only replicas to prevent them from being affected
by low-priority requests.

Schema Management

The fourth measure is to only allow lightweight schema changes on this cluster. This means:

Creating new tables or introducing new workloads is not permitted.
Adding or removing columns is allowed (with a 5-second timeout), but any operation
requiring a full table rewrite is not allowed.
Creating or removing indexes is permitted but must use the CONCURRENTLY option.

Another issue mentioned is that long-running queries (>1s) during operation can continuously
block schema changes, ultimately causing them to fail. The solution is to have the application
optimize or offload these slow queries.

Results
Scaled Azure-hosted PostgreSQL to handle over one million QPS (combined read and
write) across the entire cluster, supporting OpenAI’s critical services.
Added dozens of replicas (approximately 40) without increasing replication lag.
Deployed read-only replicas across different geographic regions while maintaining low

23/05/2025, 16:24OpenAI: Scaling PostgreSQL to the Next Level | PixelsTech

Page 6 of 14https://www.pixelstech.net/article/1747708863-openai%3a-scaling-postgresql-to-the-next-level

latency.
Experienced only one PostgreSQL-related SEV0 incident in the past nine months.
Reserved ample capacity for future growth.

Incident Cases
OpenAI also shared several case studies of issues encountered:

The first case involved a cache failure leading to a cascading effect.

The second incident was particularly interesting: under extremely high CPU usage, a
bug was triggered where, even after CPU levels normalized, the WALSender process
continued spinning in a loop instead of properly sending WAL logs to replicas, resulting
in increased replication lag.

23/05/2025, 16:24OpenAI: Scaling PostgreSQL to the Next Level | PixelsTech

Page 7 of 14https://www.pixelstech.net/article/1747708863-openai%3a-scaling-postgresql-to-the-next-level

Feature Requests
Finally, Bohan presented several issues and feature requests to the PostgreSQL developer
community:

1. Regarding index management: unused indexes can lead to write amplification and
additional maintenance overhead. OpenAI wishes to remove unnecessary indexes but,
to minimize risk, they propose a “Disable” feature for indexes. This would allow
monitoring performance metrics to ensure stability before permanently dropping the
index.

2. On observability: currently, pg_stat_statements provides only average response
times per query type, lacking direct access to p95 and p99 latency metrics. They hope
for more metrics akin to histograms and percentile latencies.

3. Concerning schema changes: they desire PostgreSQL to record a history of schema
change events, such as adding or removing columns and other DDL operations.

4. Monitoring view semantics: they observed a session with state = Active and
wait_event = ClientRead persisting for over two hours. This indicates a connection
remained active for an extended period post-QueryStart, and such connections cannot
be terminated by idle_in_transaction timeouts. They seek to understand if this is a
bug and how to address it.

5. Lastly, they suggest optimizing PostgreSQL’s default parameters, noting that the current
default values are overly conservative. They inquire whether better defaults or heuristic-
based settings could be implemented.

Lao Feng’s Comments

23/05/2025, 16:24OpenAI: Scaling PostgreSQL to the Next Level | PixelsTech

Page 8 of 14https://www.pixelstech.net/article/1747708863-openai%3a-scaling-postgresql-to-the-next-level

Although PGConf.Dev 2025 primarily focuses on development, there are often user-side use
case shares as well—like OpenAI’s scalability practices with PostgreSQL. Topics like this are
actually quite interesting to core developers, since many of them have no concept of how
PostgreSQL is used in extreme real-world scenarios.

Since the end of 2017, Lao Feng managed dozens of PostgreSQL clusters at Tantan, which
was one of the largest and most complex deployments in China’s internet sector at the time:
dozens of PostgreSQL clusters handling around 2.5 million QPS. Back then, their largest
core cluster used a master with 33 replicas and carried around 400,000 QPS. The bottleneck
was also on single-node write performance, which they eventually addressed through
database and table sharding on the application side.

You could say that the issues encountered and the solutions applied in OpenAI’s talk were all
things they’ve dealt with before. Of course, what’s different now is that today’s top-tier
hardware is way more powerful than it was eight years ago. That allows a startup like OpenAI
to use a single PostgreSQL cluster—without sharding or partitioning—to serve their entire
business. This undoubtedly serves as another strong piece of evidence for the idea that
“distributed databases are a false need.”

OpenAI uses managed PostgreSQL on Azure, with top-tier server specs. The number of
replicas reaches over 40, including some cross-region replicas. This massive cluster handles
around 1 million QPS (read + write) in total. They use Datadog for monitoring, and their
services access the RDS cluster through application-side PgBouncer connection pooling
from within Kubernetes.

Since OpenAI is a strategic-level customer, the Azure PostgreSQL team provides very
hands-on support. But clearly, even with top-tier cloud database services, users still need
strong awareness and capabilities on the application and operations side. Even with the
brainpower of OpenAI, they still run into pitfalls in PostgreSQL operations in practice.

High availability wasn’t discussed in this talk, so we can assume that’s handled by Azure
PostgreSQL RDS. Meanwhile, monitoring is critical for system ops. OpenAI uses Datadog to
monitor PostgreSQL—and even with OpenAI’s financial resources, they still feel that
Datadog is ridiculously expensive.

After the conference, during the evening social event, Lao Feng had a long chat into the early
hours with Bohan and two other database founders. The private conversation was very
engaging, though Lao Feng couldn’t reveal more details—haha.

23/05/2025, 16:24OpenAI: Scaling PostgreSQL to the Next Level | PixelsTech

Page 9 of 14https://www.pixelstech.net/article/1747708863-openai%3a-scaling-postgresql-to-the-next-level

Lao Feng Q&A
Regarding the issues and feature requests raised by Bohan, Lao Feng offers some answers
here. In fact, most of the functionality OpenAI is looking for already exists within the
PostgreSQL ecosystem—it just might not be available in the core PostgreSQL or on Azure
RDS.

On Disabling Indexes

PostgreSQL actually does have a feature to disable indexes. You can simply set the
indisvalid field to false in the pg_index system catalog. This makes the planner ignore the
index, although it will still be maintained during DML operations. From a technical standpoint,

23/05/2025, 16:24OpenAI: Scaling PostgreSQL to the Next Level | PixelsTech

Page 10 of 14https://www.pixelstech.net/article/1747708863-openai%3a-scaling-postgresql-to-the-next-level

this is totally fine—this is the same mechanism used during concurrent index creation via the
isready and isvalid flags. It’s not black magic.

That said, it’s understandable why OpenAI can’t use this method—RDS doesn’t grant
superuser permissions, so you can’t modify system catalogs directly to achieve this.

But going back to the original goal—avoiding accidental deletion of indexes—there’s a
simpler solution: just confirm via monitoring views that the index is not being used on either
primary or replicas. If it hasn’t been accessed for a long time, it’s safe to delete.

Using the Pigsty monitoring system, you can observe the process of live index switching for
PGSQL tables.

CREATE UNIQUE INDEX CONCURRENTLY pgbench_accounts_pkey2
ON pgbench_accounts USING BTREE(aid);

-- Mark the original index as invalid (won’t be used) but still maintained
UPDATE pg_index SET indisvalid = false
WHERE indexrelid = 'pgbench_accounts_pkey'::regclass;

On Observability

pg_stat_statements likely won’t provide P95 or P99 percentile metrics anytime soon, as this
would drastically increase the memory footprint of the extension—maybe dozens of times.
While modern servers could handle it, extremely conservative environments might not. I

23/05/2025, 16:24OpenAI: Scaling PostgreSQL to the Next Level | PixelsTech

Page 11 of 14https://www.pixelstech.net/article/1747708863-openai%3a-scaling-postgresql-to-the-next-level

asked the maintainer of pg_stat_statements about this and it’s unlikely to happen. I also
asked Jelte, the maintainer of pgbouncer, and such functionality is also unlikely in the short
term.

But the issue can be addressed. First, the pg_stat_monitor extension does provide detailed
percentile latency (RT) metrics and would certainly work, though you’ll need to consider the
performance overhead of collecting such metrics. A second option is using eBPF to passively
collect RT metrics, and of course, the simplest way is to add query latency monitoring directly
in the application’s data access layer (DAL).

The most elegant solution might be eBPF-based side-channel collection, but since they’re
using Azure’s managed PostgreSQL without server access, this option is probably off the
table.

On Schema Change History

Actually, PostgreSQL logs already offer this capability—just set log_statement to ddl (or more
verbosely, mod or all), and all DDL statements will be logged. The pgaudit extension provides
similar capabilities.

But I suspect what they really want is not logs, but a system view that can be queried via
SQL. In that case, another option is to use CREATE EVENT TRIGGER to log DDL events
directly into a data table. The pg_ddl_historization extension provides a much easier way to
do this, and I’ve already compiled and packaged this extension.

However, creating event triggers also requires superuser privileges. AWS RDS has some
special handling that makes this possible, but Azure’s PostgreSQL doesn’t seem to support
it.

On the Semantics of Monitoring Views

In OpenAI’s example, State = Active means the backend process is still within the lifecycle of
a single SQL statement—it hasn’t sent a ReadyForQuery message to the frontend yet, so
PostgreSQL still considers the statement “not yet finished.” As a result, resources like row
locks, buffer pins, snapshots, and file handles are still considered “in use.” WaitEvent =
ClientRead means the process is waiting for input from the client. When both appear
together, a typical case is an idle COPY FROM STDIN, but it could also be due to TCP
blocking or being stuck between BIND and EXECUTE. So it’s hard to say definitively whether
it’s a bug—it depends on what the connection is actually doing.

Some might argue that waiting for client I/O should count as “idle” from a CPU perspective.
But State tracks the execution state of the statement, not whether the process is actively
using the CPU. A query can be in the Active state while not running on CPU (when
WaitEvent is NULL), or it can be looping on CPU waiting for client input (i.e., ClientRead).

Back to the core issue—there are ways to address it. For example, in Pigsty, when
PostgreSQL is accessed via HAProxy, the primary service has a maximum connection
lifespan (e.g., 24 hours) set at the load balancer level. In more stringent environments, this

23/05/2025, 16:24OpenAI: Scaling PostgreSQL to the Next Level | PixelsTech

Page 12 of 14https://www.pixelstech.net/article/1747708863-openai%3a-scaling-postgresql-to-the-next-level

can be as short as one hour. This means connections exceeding the lifespan are terminated.
Ideally, though, the client-side connection pool should proactively enforce connection
lifetimes instead of being forcibly disconnected. For offline, read-only services, this timeout
isn’t needed—allowing for long-running queries that may last for days. This approach
provides a safety net for cases where a connection is Active but waiting on I/O.

That said, it’s unclear whether Azure PostgreSQL offers this kind of control.

On Default Parameters

PostgreSQL’s default parameters are extremely conservative. For example, it defaults to just
256 MB of memory (and can be set as low as 256 KB!). The upside is that PostgreSQL can
start and run in virtually any environment. The downside? I’ve seen a production setup with 1
TB of physical memory still running with the default 256 MB configuration… (Thanks to
double buffering, it actually ran for quite a while.)

Overall, I think conservative defaults aren’t a bad thing. This issue can be solved with more
flexible dynamic configuration. Services like RDS and Pigsty offer well-designed heuristics for
initial parameter tuning, which already solves this problem quite well. That said, this feature
could still be built into PostgreSQL command-line tools—e.g., during initdb, the tool could
auto-detect CPU, memory, disk size and type, and set sensible defaults accordingly.

Self-Hosting?

The real challenges in OpenAI’s setup don’t stem from PostgreSQL itself, but rather the
limitations of using managed PostgreSQL on Azure. One solution would be to bypass those
restrictions by using Azure or another cloud’s IaaS layer to deploy self-hosted PostgreSQL
clusters on local NVMe SSD instances.

In fact, Pigsty (https://pigsty.io/) was built by Lao Feng specifically to address PostgreSQL
challenges at this scale—it’s essentially a self-hosted RDS solution, and it scales well. Many
of the problems OpenAI has encountered—or will encounter—already have solutions
implemented in Pigsty, which is open-source and free.

If OpenAI is interested, I’d be happy to offer some help. That said, when a company is
scaling as fast as they are, tweaking database infrastructure might not be a top priority.
Fortunately, they’ve got some excellent PostgreSQL DBAs who can keep pushing forward
and exploring these paths.

The article is authorized by Lao Feng (https://x.com/RonVonng) to translate and
republish here. the original link is at
https://mp.weixin.qq.com/s/ykrasJ2UeKZAMtHCmtG93Q
(https://mp.weixin.qq.com/s/ykrasJ2UeKZAMtHCmtG93Q)

ADVICE (/article.php?tag=422) POSTGRES (/article.php?tag=2725) OPENAI (/article.php?tag=6931)

https://pigsty.io/
https://x.com/RonVonng
https://mp.weixin.qq.com/s/ykrasJ2UeKZAMtHCmtG93Q
https://www.pixelstech.net/article.php?tag=422
https://www.pixelstech.net/article.php?tag=2725
https://www.pixelstech.net/article.php?tag=6931

23/05/2025, 16:24OpenAI: Scaling PostgreSQL to the Next Level | PixelsTech

Page 13 of 14https://www.pixelstech.net/article/1747708863-openai%3a-scaling-postgresql-to-the-next-level

 (https://www.facebook.com/share.php?u=https://www.pixelstech.net/article/1747708863-openai%3a-

scaling-postgresql-to-the-next-level)  (https://twitter.com/intent/tweet?

text=OpenAI%3A+Scaling+PostgreSQL+to+the+Next+Level&url=https://www.pixelstech.net/article/1747708863-

openai%3a-scaling-postgresql-to-the-next-level&via=PixelstechNet) 
(https://service.weibo.com/share/share.php?url=https://www.pixelstech.net/article/1747708863-openai%3a-

scaling-postgresql-to-the-next-

level&title=OpenAI%3A+Scaling+PostgreSQL+to+the+Next+Level+via+%40PixelsTech) 
(https://reddit.com/submit?url=https://www.pixelstech.net/article/1747708863-openai%3a-scaling-postgresql-

to-the-next-level&title=OpenAI%3A+Scaling+PostgreSQL+to+the+Next+Level) 
(https://www.linkedin.com/shareArticle?mini=true&url=https://www.pixelstech.net/article/1747708863-

openai%3a-scaling-postgresql-to-the-next-level&title=OpenAI: Scaling PostgreSQL to the Next

Level&source=https://www.pixelstech.net/article/1747708863-openai%3a-scaling-postgresql-to-the-next-level)

 RELATED

Change password of postgres account in Postgres (/article/1362383440-change-password-of-postgres-account-
in-postgres)
First Touch on OpenAI API (/article/1731382762-first-touch-on-openai-api)
10 advice from Jack Ma on success (/article/1440924811-10-advice-from-jack-ma-on-success)
Hologres vs AWS Redshift (/article/1710660707-hologres-vs-aws-redshift)
What does a contemporary web developer need to know? (/article/1387542689-what-does-a-contemporary-web-
developer-need-to-know)
Advice on improving your programming skills (/article/1392994721-advice-on-improving-your-programming-skills)
GitHub Copilot may generate code containing GPL code (/article/1682104779-github-copilot-may-generate-code-
containing-gpl-code)
Australian software engineer got asked algorithm question when entering US (/article/1488648567-australian-
software-engineer-got-asked-algorithm-question-when-entering-us)
A couple of tips for beginning programmers (/article/1403009209-a-couple-of-tips-for-beginning-programmers)
Good ways to build communities around a web product (/article/1394627779-good-ways-to-build-communities-
around-a-web-product)

1 COMMENT

 yusufn
May 21, 2025 at 3:33 am

 Reply

Index disabling is a long-awaited feature.

*

@

Anonymous

Get email when getting reply

https://www.facebook.com/share.php?u=https://www.pixelstech.net/article/1747708863-openai%3a-scaling-postgresql-to-the-next-level
https://twitter.com/intent/tweet?text=OpenAI%3A+Scaling+PostgreSQL+to+the+Next+Level&url=https://www.pixelstech.net/article/1747708863-openai%3a-scaling-postgresql-to-the-next-level&via=PixelstechNet
https://service.weibo.com/share/share.php?url=https://www.pixelstech.net/article/1747708863-openai%3a-scaling-postgresql-to-the-next-level&title=OpenAI%3A+Scaling+PostgreSQL+to+the+Next+Level+via+%40PixelsTech
https://reddit.com/submit?url=https://www.pixelstech.net/article/1747708863-openai%3a-scaling-postgresql-to-the-next-level&title=OpenAI%3A+Scaling+PostgreSQL+to+the+Next+Level
https://www.linkedin.com/shareArticle?mini=true&url=https://www.pixelstech.net/article/1747708863-openai%3a-scaling-postgresql-to-the-next-level&title=OpenAI:%20Scaling%20PostgreSQL%20to%20the%20Next%20Level&source=https://www.pixelstech.net/article/1747708863-openai%3a-scaling-postgresql-to-the-next-level
https://www.pixelstech.net/article/1362383440-change-password-of-postgres-account-in-postgres
https://www.pixelstech.net/article/1731382762-first-touch-on-openai-api
https://www.pixelstech.net/article/1440924811-10-advice-from-jack-ma-on-success
https://www.pixelstech.net/article/1710660707-hologres-vs-aws-redshift
https://www.pixelstech.net/article/1387542689-what-does-a-contemporary-web-developer-need-to-know
https://www.pixelstech.net/article/1392994721-advice-on-improving-your-programming-skills
https://www.pixelstech.net/article/1682104779-github-copilot-may-generate-code-containing-gpl-code
https://www.pixelstech.net/article/1488648567-australian-software-engineer-got-asked-algorithm-question-when-entering-us
https://www.pixelstech.net/article/1403009209-a-couple-of-tips-for-beginning-programmers
https://www.pixelstech.net/article/1394627779-good-ways-to-build-communities-around-a-web-product

23/05/2025, 16:24OpenAI: Scaling PostgreSQL to the Next Level | PixelsTech

Page 14 of 14https://www.pixelstech.net/article/1747708863-openai%3a-scaling-postgresql-to-the-next-level

 COMMENT

ABOUT
About us

(/document/aboutus.php)

Library

(/document/opensource.php)

Privacy policy

(/document/privacy.php)

Terms of service

(/document/termofservice.php)

HOW IT WORKS
Feeds (/article/1734054940-

announcing-new-feed-

service)

Post help

(/document/article_post_help.php)

Article guideline

(/document/guideline.php)

Submit article (/admin.php?

page_id=admin/file_generator)

FOLLOW US
 RSS (/feed.xml)

 Weibo

(https://www.weibo.com/2643898200/profile?

rightmod=1&wvr=5&mod=personinfo)

 Facebook

(https://www.facebook.com/pixelstechdotnet)

 X
(https://x.com/PixelstechNet)

 WeChat

(/view/wechat.php)

FEEDBACK
Contact us

(/document/contactus.php)

Bug report (/bug_report.php)

Feedback (/feedback.php)

©2025 PixelsTech.net All rights reserved

https://www.pixelstech.net/document/aboutus.php
https://www.pixelstech.net/document/opensource.php
https://www.pixelstech.net/document/privacy.php
https://www.pixelstech.net/document/termofservice.php
https://www.pixelstech.net/article/1734054940-announcing-new-feed-service
https://www.pixelstech.net/document/article_post_help.php
https://www.pixelstech.net/document/guideline.php
https://www.pixelstech.net/admin.php?page_id=admin/file_generator
https://www.pixelstech.net/feed.xml
https://www.weibo.com/2643898200/profile?rightmod=1&wvr=5&mod=personinfo
https://www.facebook.com/pixelstechdotnet
https://x.com/PixelstechNet
https://www.pixelstech.net/view/wechat.php
https://www.pixelstech.net/document/contactus.php
https://www.pixelstech.net/bug_report.php
https://www.pixelstech.net/feedback.php

